• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Home
  • Group Members
  • Research Projects
  • Publications
  • Opportunities

Geoecohydrology Research Group

Understanding the Earth system from bedrock to atmosphere

Texas A&M University College of Engineering

Assessing aquifer storage and recovery feasibility in the Gulf Coastal Plains of Texas

Map of aquifers with color gradient indicating feasibility score and large cities labeled.

Smith, W. B.*, G.R. Miller, and Z. Sheng (2017). Assessing aquifer storage and recovery feasibility in the Gulf Coastal Plains of Texas,  Journal of Hydrology: Regional Studies, 14:92-108,  doi:10.1016/j.ejrh.2017.10.007.

Abstract

Study region

The Gulf Coast and Carrizo-Wilcox aquifer systems in the Gulf Coastal Plains of Texas.

Study focus

Aquifer storage and recovery is a water storage alternative that is underutilized in Texas, a state with both long periods of drought and high intensity storms. Future water storage plans in Texas almost exclusively rely on surface reservoirs, subject to high evaporative losses. This study seeks to identify sites where aquifer storage and recovery (ASR) may be successful, especially in recovery of injected waters, by analyzing publicly-available hydrogeologic data. Transmissivity, hydraulic gradient, well density, depth to aquifer, and depth to groundwater are used in a GIS-based index to determine feasibility of implementing an ASR system in the Gulf Coast and Carrizo-Wilcox aquifer systems.

New hydrological insights for the region

Large regions of the central and northern Gulf Coast and the central and southern Carrizo-Wilcox aquifer systems are expected to be hydrologically feasible regions for ASR. Corpus Christi, Victoria, San Antonio, Bryan, and College Station are identified as possible cities where ASR would be a useful water storage strategy.

Publications by Subject

  • MAR and ASR
  • Groundwater Sustainability
  • Ecohydrology
  • Tropical Systems
  • Engineering Solutions
  • Infiltration BMPS
  • Modeling
  • Dryland Ecosystems
  • Tropical Ecosystems
    • © 2016–2023 Geoecohydrology Research Group Log in

      • Zachry Department of Civil & Environmental Engineering
      • College of Engineering